
Swift_T_Variant_Calling Documentation
Release 1.0.0

Azza E. Ahmed, Jacob R. Heldenbrand, Yan Asmann, Katherine Kendig, Matthew C. Kendzior, Tiffany Li, Yingxue Ren, Elliott Rodriguez, Matthew R. Weber, Jennie Zermeno, Faisal M. Fadlelmola, Daniel Katz, Liudmila S. Mainzer

Jan 14, 2019

Contents

1 Pipeline architecture and function 3

2 Installation 5
2.1 Dependencies . 5
2.2 Workflow Installation . 5

3 User Guide 7
3.1 Runfile Options . 7
3.2 Running the Pipeline . 10
3.3 Output Structure . 14
3.4 Logging functionality . 15
3.5 Data preparation . 16
3.6 Resource Requirements . 16
3.7 Pipeline Interruptions and Continuations . 17

4 Under The Hood 19

5 Troubleshooting 21
5.1 General Troubleshooting Tips . 21
5.2 FAQs . 21

6 Developer Guide 23

7 Citation and Licensing 25

i

ii

Swift_T_Variant_Calling Documentation, Release 1.0.0

Welcome to this documentation site for a complete Variant Calling pipeline written in Swift/T. This guide leads you
through the workflow in terms of what it does, and how to up and running in using it.

The pipeline has been implemented according to the GATK’s best practices for germline variant calling in Whole
Genome and Whole Exome Next Generation Sequencing datasets, given a single sample or a cohort of samples,
paired- or single-end reads with flexibility in choosing analysis stages, software tools and their versions, and their
individual parameters for the specific analysis scenario.

Contents 1

https://github.com/swift-lang/swift-t
https://software.broadinstitute.org/gatk/best-practices/

Swift_T_Variant_Calling Documentation, Release 1.0.0

2 Contents

CHAPTER 1

Pipeline architecture and function

This pipeline implements the GATK’s best practices for germline variant calling in Whole Genome and Whole Exome
Next Generation Sequencing datasets, given a cohort of samples.

This pipeline was disigned for GATK 3.X, which include the following stages:

1. Map to the reference genome

2. Mark duplicates

3. Perform indel realignment and/or base recalibration (BQSR)*

4. Call variants on each sample

5. Perform joint genotyping

* The indel realignment step was recommended in GATK best practices <3.6).

Additionally, this workflow provides the option to split the aligned reads by chromosome before calling variants, which
often speeds up performance when analyzing WGS data.

An overview of the Workflow architecture is depicted in Figure 1 below

3

https://software.broadinstitute.org/gatk/best-practices/

Swift_T_Variant_Calling Documentation, Release 1.0.0

4 Chapter 1. Pipeline architecture and function

CHAPTER 2

Installation

2.1 Dependencies

First, you need Swift/T installed in your system. Depending on your system, the instructions below will guide you
through the process:

http://swift-lang.github.io/swift-t/guide.html#_installation

Next, depending on the analysis step you like, you also need the installation path of the following tools in your system:

Step Tool options
Alignment Bwa mem or Novoalign
Sorting Novosort
Marking Duplicates Samblaster,

Novosort, or
Picard

IndelRealignment GATK
BaseRecalibration
Variant Calling
Joint Genotyping
Miscellaneous Samtools, and

Novosort

2.2 Workflow Installation

Simply, clone the repository:

git clone https://github.com/ncsa/Swift-T-Variant-Calling/

Additionally, you may need R installed along with the following packages shiny, lubridate, tidyverse and
forcats. Detailed instructions are on the Logging functionality section of the User Guide

5

http://swift-lang.github.io/swift-t/guide.html#_installation
https://github.com/lh3/bwa
http://novocraft.com/
http://novocraft.com/
https://github.com/GregoryFaust/samblaster
http://novocraft.com/
https://broadinstitute.github.io/picard/
https://software.broadinstitute.org/gatk/download/
http://samtools.github.io/
http://novocraft.com/

Swift_T_Variant_Calling Documentation, Release 1.0.0

6 Chapter 2. Installation

CHAPTER 3

User Guide

For maximum flexibility, the workflow is controlled by modifying the variables contained within a runfile.

A template.runfile is packaged within the source repo, and one can simply change the respective variables according
to analysis needs. The coming sections explain the possible options in details.

3.1 Runfile Options

Different options are available by setting the variables below. Ordering is, of course, irrelevant in this context, but the
workflow is sensitive to spelling, so variable names should be identical.

Variable Effect and meaning
SAMPLEINFORMATION

The file that contains the paths to each sample’s
reads, where each sample is on its own line in the
form:

SampleName /path/to/read1.fq /path/
to/read2.fq
Alternatively, if analyzing single-end reads, the format

is simply: SampleName /path/to/
read1.fq

It is necessary that no empty line is inserted at the end
of this file

OUTPUTDIR
The path that will serve as the root of all of the output files

generated from the pipeline (See Output directo-
ries and files generated from a typical run of the
pipeline)

Continued on next page

7

https://github.com/ncsa/Swift-T-Variant-Calling/blob/master/template.runfile

Swift_T_Variant_Calling Documentation, Release 1.0.0

Table 1 – continued from previous page
Variable Effect and meaning
TMPDIR The path to where temporary files will be stored (See

Output directories and files generated from a typical run
of the pipeline)

REALIGN YES if one wants to realign before recalibration, NO if
not.

SPLIT YES if one wants to split-by-chromosome before calling
variants, NO if not.

PROGRAMS_PER_NODE
Sometimes it is more efficent to double (or even triple) up runs of an

application on the same nodes using half of the
available threads than letting one run of the
application use all of them. This is because
many applications only scale well up to a certain
number of threads, and often this is less than the
total number of cores available on a node. Under
the hood, this variable simply controls how many
threads each tool gets. If CORES_PER_NODE is
set to 20 but PROGRAMS_PER_NODE is set to 2,
each tool will use up to 10 threads.

IMPORTANT NOTE
It is up to the user at runtime to be sure that the right

number of processes are requested per node when
calling Swift-T itself (See Running the Pipeline),
as this is what actually controls how processes are
distributed.

CORES_PER_NODE
Number of cores within nodes to be used in the analysis. For

multi-threaded tools: 𝑁𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝑇ℎ𝑟𝑒𝑎𝑑𝑠 =
𝐶𝑜𝑟𝑒𝑠𝑃𝑒𝑟𝑁𝑜𝑑𝑒

𝑃𝑟𝑜𝑔𝑟𝑎𝑚𝑠𝑃𝑒𝑟𝑁𝑜𝑑𝑒

EXIT_ON_ERROR
If this is set to YES, the workflow will quit after a sample fails

quality control.
If set to NO, the workflow will let samples fail, and continue

processing all of those that did not. The workflow
will only stop if none of the samples remain after
the failed ones are filtered out.
This option is provided because for large sample
sets one may expect a few of the input samples
to fail quality control, and it may be acceptable
to keep going if a few fail. However, exercise
caution and monitor the Failures.log gener-
ated in the DELIVERYFOLDER/docs folder to
gauge how many of the samples are failing.

ALIGN_DEDUP_STAGE These variables control whether each stage is ran or skipped (only
stages that were successfully run previously can
be skipped, as the “skipped” option simply looks
for the output files that were generated from a
previous run.)

Each of these stage variables can be set to Y or N. In addition,
all but the last stage can be set to End, which
will stop the pipeline after that stage has been ex-
ecuted (think of the End setting as shorthand for
“End after this stage”) See Pipeline Interruptions
and Continuations for more details.

CHR_SPLIT_STAGE

Continued on next page

8 Chapter 3. User Guide

Swift_T_Variant_Calling Documentation, Release 1.0.0

Table 1 – continued from previous page
Variable Effect and meaning
VC_STAGE

COMBINE_VARIANT_STAGE

JOINT_GENOTYPING_STAGE

PAIRED 0 if reads are single-ended only; 1 if they are paired-end
reads

ALIGNERTOOL Tool for the alignment stage. either: BWAMEM or
NOVOALIGN

MARKDUPLICATESTOOL Tool for marking duplicates. either: SAMBLASTER,
PICARD, or NOVOSORT

BWAINDEX Depending on the tool being used, one of these variables specify

the location of the index fileNOVOALIGNINDEX
BWAMEMPARAMS; NOVOALIGNPARAMS

This string is passed directly as arguments to the corresponding tool
as (an) argument(s). For example:
BWAMEMPARAMS=-k 32 -I 300,30

Note: There is no space between the ‘=’ character and
your parameters
Note: Do not set the thread count or paired/single-ended
flags, as they are taken care of by the workflow itself

CHRNAMES List of chromosome/contig names separated by a :. For
example: chr1:chr2:chr3 or 1:2:3
Note: chromosome names must match those found in the files located in

the directory that INDELDIR points to, as well
as those in the reference fasta files

NOVOSORT_MEMLIMIT
Novosort is a tool that used a lot of RAM. If doubling up novosort runs

on the same node, this may need to be reduced
to avoid an OutOfMemory Error. Otherwise, just
set it to most of the RAM on a node. You need to
set this value regardless of you analysis scenario

This is set in bytes, so if you want to limit novosort to using 30 GB,
one would set it to
NOVOSORT_MEMLIMIT=30000000000

MAP_CUTOFF The minimum percentage of reads that were success-
fully mapped in a successful alignment

DUP_CUTOFF The maximum percentage of reads that are marked as
duplicates in a successful sample

REFGENOME Full path to the reference genome /path/to/
example.fa.
It is assumeed reference has .dict and .fai (index) files in the same

directory

DBSNP Full path to the dbsnp vcf file (GATK assumes that this
file is indexed)

Continued on next page

3.1. Runfile Options 9

Swift_T_Variant_Calling Documentation, Release 1.0.0

Table 1 – continued from previous page
Variable Effect and meaning
INDELDIR

Full path to the directory that contains the standard indel variant files
used in the realignment/recalibration step

Within the directory, the vcf files should be named with only the
chromosome name in front and nothing else.

For example, if the chromosome is chr12 or 12, name the vcf
files chr12.vcf or 12.vcf, respectively.

If not splitting by chromosome, the workflow will look for all of the
vcf files in the directory.

JAVAEXE Full path of the appropriate executable file
BWAEXE
SAMBLASTEREXE
SAMTOOLSEXE
NOVOALIGNEXE
NOVOSORTEXE
PICARDJAR Full path of the appropriate jar file
GATKJAR
JAVA_MAX_HEAP_SIZE

Memory area to store all java objects. This should be tuned in relevance to
the speed and frequency at which garbage collec-
tion should occur. With larger input size, larger
heap is needed.

3.2 Running the Pipeline

3.2.1 Requesting Resources from the Job Scheduler

Swift-T works by opening up multiple “slots”, called processes, where applications can run. There are two types of
processes this workflow allocates:

1. SERVERS - Control the execution of Swift-T itself; all Swift-T applications must have at least one of these.

2. WORKERS - Run the actual work of each application in the workflow; these will make up the vast majority of
processes

Controlling various aspects of the job submission is achieved by setting environment variables to the desired val-
ues. For example, the user can fine control the total number of processes needed by setting PROCS=<Number
of MPI processes>, and/or the number of workers via TURBINE_WORKERS and the number of servers via
ADLB_SERVERS. Similarly, one can specify QUEUE, WALLTIME and PROJECT specifications. More coverage of
these is provided in the Swift/T sites guide.

Other options allow control of logging options. Especially for users unfamiliar with Swift/T, we recommend always
setting the environment variable ADLB_DEBUG_RANKS=1 and checking the beginning of the Swift/T log to be sure
processes are being allocated as the user expects.

Often when we use a cluster we set the PPN variable to the number of cores on each node. Swift/T will allocate PPN
processes on each node. Normally, we set PPN to the number of cores for maximal concurrency, although the PPN
setting can be used to over- or under-subscribe processes. For example, an application that is short on memory might
set a lower PPN, where an I/O intensive application might set a higher PPN.

10 Chapter 3. User Guide

http://swift-lang.github.io/swift-t/sites.html#variables

Swift_T_Variant_Calling Documentation, Release 1.0.0

For convenience, we recommend setting all such environment variables in a file, and then adding it to the Swift/T
command. This is shown in the sections below for different schedulers (PBS Torque (general), Cray System (Like Blue
Waters at UIUC), SLURM based Systems (Like Biocluster2 at UIUC, and Stampede1/Stampede2 on XSEDE), Systems
without a resource manager:).

3.2.2 Executing the Swift-T Application

If using multiple nodes, one should set the SWIFT_TMP to another location besides the default /tmp, that is shared
by all of the nodes

For example, export SWIFT_TMP=/path/to/home/directory/tmp

The type of job scheduler dictates how one calls Swift-T will be seen in the sections below.

PBS Torque (general)

Usually, one can use swift-t’s built-in job launcher for PBS Torque schedulers (calling swift-t with -m pbs)

$ cat settings.sh # Conveniently, we save environment variables in settings.sh
export PPN=<PROGRAMS_PER_NODE>
export NODES=<#samples/PROGRAMS_PER_NODE + (1 or more)>
export PROCS=$(($PPN * $NODES))
export WALLTIME=<HH:MM::SS>
export PROJECT=<Project ID>
export QUEUE=<queue>
export SWIFT_TMP=/path/to/directory/temp

(Optional variables to set)
export TURBINE_LOG=1
export ADBL_DEBUG_RANKS=1
export TURBINE_OUTPUT=/path/to/output_log_location

$ swift-t -m pbs -O3 -s settings.sh \
-o /path/to/where/compiled/should/be/saved/compiled.tic \
-I /path/to/Swift-T-Variant-Calling/src/ \
-r /path/to/Swift-T-Variant-Calling/src/bioapps \
/path/to/Swift-T-Variant-Calling/src/VariantCalling.swift \
-runfile=/path/to/your.runfile

This command will compile and run the pipeline all in one command, and the flags used in this call do the following:

• -O3 Conduct full optimizations of the Swift-T code during compilation (Even with full optimizations, compi-
lation of the code takes only around 3 seconds)

• -m pbs The job scheduler type, pbs torque in this case

• -s settings.sh The file with environment variables’ settings for the scheduler

• -o The path to the compiled swift-t file (has a .tic extension); on the first run, this file will be created.

• -I This includes some source files that are imported during compilation

• -r This includes some tcl package files needed during compilation

• -n The number of processes (ranks) Swift-T will open for this run of the workflow (this overrides the PROCS
specification above, so I’m not sure we should use both – ask/advise)

• -runfile The path to the runfile with all of the configuration variables for the workflow

3.2. Running the Pipeline 11

Swift_T_Variant_Calling Documentation, Release 1.0.0

PBS Torque (alternative)

If you need to import a module to use Swift/T (as is the case on iForge at UIUC), one cannot simply use the swift-t
launcher as outlined above, since the module load command is not part of the qsub file that Swift-t generates and
submits.

This command must be included (along with any exported environment variables and module load commands) in a
job submission script and not called directly on a head/login node.

swift-t -O3 -o </path/to/compiled_output_file.tic> \
-I /path/to/Swift-T-Variant-Calling/src \
-r /path/to/Swift-T-Variant-Calling/src/bioapps \
-n < Node# * PROGRAMS_PER_NODE + 1 or more > \
/path/to/Swift-T-Variant-Calling/src/VariantCalling.swift \
-runfile=/path/to/example.runfile

It is important to note that (at least for PBS Torque schedulers) when submitting a qsub script, the ppn option should
be set, not to the number of cores on each compute node, but to the number of WORKERS Swift-T needs to open up on
that node.

Example

If one is wanting to run a 4 sample job with PROGRAMS_PER_NODE set to 2 in the runfile (meaning that two
BWA runs can be executing simultaneously on a given node, for example), one would set the PBS flag to -l
nodes=2:ppn=2 and the -n flag when calling the workflow to 5 (nodes*ppn + 1)

Cray System (Like Blue Waters at UIUC)

Configuring the workflow to work in this environment requires a little more effort.

Create and run the automated qsub builder

To get the right number of processes on each node to make the PROGRAMS_PER_NODE work correctly, one must set
PPN= PROGRAMS_PER_NODE and NODES to #samples/PROGRAMS_PER_NODE + (1 or more), because
at least one process must be a Swift-T SERVER. If one wanted to try running 4 samples on 2 nodes but with PPN=3
to make room for the processes that need to be SERVER types, one of the nodes may end up with 3 of your WORKER
processes running simultaneously, which may lead to memory problems when Novosort is called.

(The exception to this would be when using a single node. In that case, just set PPN=#PROGRAMS_PER_NODE +
1)

So, with that understanding, call swift-t in the following way:

$ cat settings.sh
export PPN=<PROGRAMS_PER_NODE>
export NODES=<#samples/PROGRAMS_PER_NODE + (1 or more)>
export PROCS=$(($PPN * $NODES))
export WALLTIME=<HH:MM:SS>
export PROJECT=<Project ID>
export QUEUE=<Queue>
export SWIFT_TMP=/path/to/directory/temp

CRAY specific settings:
export CRAY_PPN=true

(Optional variables to set)
export TURBINE_LOG=1 # This produces verbose logging info; great for debugging
export ADLB_DEBUG_RANKS=1 # Displays layout of ranks and nodes

(continues on next page)

12 Chapter 3. User Guide

Swift_T_Variant_Calling Documentation, Release 1.0.0

(continued from previous page)

export TURBINE_OUTPUT=/path/to/log/directory # This specifies where the log info
→˓will be stored; defaults to one's home directory

$ swift-t -m cray -O3 -n $PROCS -o /path/to/where/compiled/should/be/saved/compiled.
→˓tic \
-I /path/to/Swift-T-Variant-Calling/src/ -r /path/to/Swift-T-Variant-Calling/src/
→˓bioapps \
/path/to/Swift-T-Variant-Calling/src/VariantCalling.swift -runfile=/path/to/your.
→˓runfile

Kill, fix, and rerun the generated qsub file

Swift-T will create and run the qsub command for you, however, this one will fail if running on two or more nodes, so
immediately kill it. Now we must edit the qsub script swift produced

To fix this, we need to add a few variables to the submission file that was just created.

The file will be located in the $SWIFT_TMP directory and will be called turbine-cray.sh

Add the following items to the file:

#PBS -V

Note: Make sure this directory is created before running the workflow, and make sure it is not just ‘/tmp’

export SWIFT_TMP=/path/to/tmp_dir
export TMPDIR=/path/to/tmp_dir
export TMP=/path/to/tmp_dir

Now, if you submit the turbine-cray.sh script with qsub, it should work.

SLURM based Systems (Like Biocluster2 at UIUC, and Stampede1/Stampede2 on XSEDE)

As in the case with the pbs-based clusters, it is sufficient to only specify the scheduler using -m slurm, and then
proceed as above. Additionaly, the same settings.sh file can be used, except that the user can also instruct the
scheduler to send email notifications as well. The example below clarifies these:

$ cat settings.sh
export PPN=<PROGRAMS_PER_NODE>
export NODES=<#samples/PROGRAMS_PER_NODE + (1 or more)>
export PROCS=$(($PPN * $NODES))
export WALLTIME=<HH:MM:SS>
export PROJECT=<Project ID>
export QUEUE=<Queue>
export SWIFT_TMP=/path/to/directory/temp

SLURM specific settings
export MAIL_ENABLED=1
export MAIL_ADDRESS=<the desired email address for sending notifications- on job
→˓start, fail and finish >
export TURBINE_SBATCH_ARGS=<Other optional arguments passed to sbatch, like --
→˓exclusive and --constraint=.. etc>

(Optional variables to set)
export TURBINE_LOG=1 # This produces verbose logging info; great for debugging
export ADLB_DEBUG_RANKS=1 # Displays layout of ranks and nodes
export TURBINE_OUTPUT=/path/to/log/directory # This specifies where the log info
→˓will be stored; defaults to one's home directory

(continues on next page)

3.2. Running the Pipeline 13

Swift_T_Variant_Calling Documentation, Release 1.0.0

(continued from previous page)

$ swift-t -m slurm -O3 -n $PROCS -o /path/to/where/compiled/should/be/saved/compiled.
→˓tic \
-I /path/to/Swift-T-Variant-Calling/src/ -r /path/to/Swift-T-Variant-Calling/src/
→˓bioapps \
/path/to/Swift-T-Variant-Calling/src/VariantCalling.swift -runfile=/path/to/your.
→˓runfile

Systems without a resource manager:

For these system, specifying the settings.sh file as above doesn’t really populate the options to turbine when
using Swift/T version 1.2. The workaround in such cases would be to export the settings directly to the
environment, and nohup or screen the script launching the swift/t pipeline. Below is a good example:

$ cat runpipeline.sh
#!/bin/bash
export PROCS=$(PROGRAMS_PER_NODE * (#samples/PROGRAMS_PER_NODE + (1 or more)))
export SWIFT_TMP=/path/to/directory/temp

(Optional variables to set)
export TURBINE_LOG=1 # This produces verbose logging info; great for debugging
export ADLB_DEBUG_RANKS=1 # Displays layout of ranks and nodes
export TURBINE_OUTPUT=/path/to/log/directory # This specifies where the log info
→˓will be stored; defaults to one's home directory

$ swift-t -O3 -l -u -o /path/to/where/compiled/should/be/saved/compiled.tic \
-I /path/to/Swift-T-Variant-Calling/src/ -r /path/to/Swift-T-Variant-Calling/src/
→˓bioapps \
/path/to/Swift-T-Variant-Calling/src/VariantCalling.swift -runfile=/path/to/your.
→˓runfile

echo -e "Swift-T pipeline run on $HOSTNAME has concluded successfully!" | mail -s
→˓"swift_t_pipeline" "your_email"

$
$ nohup ./runpipeline.sh &> log.runpipeline.swift.t.nohup &

3.3 Output Structure

The figure below shows the Directory structure of various Output directories and files generated from a typical run of
the pipeline

Fig. 1: Output directories and files generated from a typical run of the pipeline

14 Chapter 3. User Guide

Swift_T_Variant_Calling Documentation, Release 1.0.0

3.4 Logging functionality

3.4.1 Swift/T logging options

While the outputs generated by all the tools of the workflow itself will be logged in the log folders within the OUTDIR
structure, Swift-T generates a log itself that may help debug if problems occur.

Setting the environment variable TURBINE_LOG=1 will make the log quite verbose

Setting ADLB_DEBUG_RANKS=1 will allow one to be sure the processes are being allocated to the nodes in the way
one expects

3.4.2 Workflow logging options

The provided scripts allow you to check out the trace of a successful run of the pipeline. To invoke it, and for the time
being, you need R installed in your environment along with the shiny package.

To do so, proceed as follows:

1. Go to the R-project webpage, and follow the instructions based on your system

2. Once the step above is completed and R is installed, open a terminal window, type R, then proceed as follows:

if (!require(shiny)) {
install.packages('shiny')
library(shiny)

}
runGitHub(repo = "ncsa/Swift-T-Variant-Calling", ref = "master",

subdir = "src/plotting_app")

3.4. Logging functionality 15

http://ftp.heanet.ie/mirrors/cran.r-project.org/

Swift_T_Variant_Calling Documentation, Release 1.0.0

The first time you run these commands in your system it will also install some libraries for you in case you don’t have
them already, namely: lubridate, tidyverse and forcats.

Once all is done, a webpage should open up for you to actually take a look at your trace files. For a taste of how things
look, you may take a look at the sample Timing.log file provided in the repo

To take a look at your own analysis trace, you need to have a copy of this branch first, Run it on you samples, and
then find your own Timing.log file within <OUTPUTDIR>/delivery/docs, where OUTPUTDIR is specified
as per the runfile. Simply upload this file, and start using the app.

3.4.3 Important Notes

• To investigate a partial pipeline run, you may cat the contents of all the small files in your TMPDIR (See runfile
options). In the example below, the contents of thid directory are catted to the partial_run_timing.log,
which is then uploaded to the logging webpage.

$ cd <TMPDIR> #TMPDIR is what has been specified in the runfile
$ find . -name '*.txt' -exec cat {} \; > partial_run_timing.log

• The overall summary tab of the logging webpage is handy in summarizing which samples, and which chromo-
somes have run successfully. It is easier to look at it when in doubt.

• Running this pipeline in its current form is expected to be more expensive than normal, due to the manual
logging involved. The alternative is to use the native MPE library (or equivalent), which requires re-compiling
the Swift/T source. This approach is currently limited at the moment, but some discussions with the Swift/T
team on this is found here

3.5 Data preparation

For this pipeline to work, a number of standard files for calling variants are needed (besides the raw reads files which
can be fastq/fq/fastq.gz/fq.gz), namely these are the reference sequence and database of known variants (Please see
this link).

For working with human data, one can download most of the needed files from the GATK’s resource bundle. Missing
from the bundle are the index files for the aligner, which are specific to the tool that would be used for alignment (i.e.,
bwa or novoalign in this pipeline)

Generally, for the preparation of the reference sequence, the following link is a good start the GATK’s guidelines.

If splitting by chromosome for the realignment/recalibration/variant-calling stages, the pipeline needs a separate vcf
file of known variants for each chromosome/contig, and each should be named as: *${chr_name}.vcf . Further,
all these files need to be in the INDELDIR which should be within the REFGENOMEDIR directory as per the runfile.

3.6 Resource Requirements

The table below describes the number of nodes each stage needs to achieve the maximum level of parallelism. One
can request fewer resources if necessary, but at the cost of having some portions running in series.

16 Chapter 3. User Guide

https://github.com/jacobrh91/Swift-T-Variant-Calling/master/src/plotting_app
https://github.com/swift-lang/swift-t/issues/118
https://software.broadinstitute.org/gatk/guide/article?id=1247
http://gatkforums.broadinstitute.org/gatk/discussion/1213/whats-in-the-resource-bundle-and-how-can-i-get-it
http://gatkforums.broadinstitute.org/wdl/discussion/2798/howto-prepare-a-reference-for-use-with-bwa-and-gatk

Swift_T_Variant_Calling Documentation, Release 1.0.0

Analysis Stage Resource Requirements
Alignment and Deduplication 𝑁𝑜𝑑𝑒𝑠 = 𝑆𝑎𝑚𝑝𝑙𝑒𝑠

𝑃𝑅𝑂𝐺𝑅𝐴𝑀𝑆_𝑃𝐸𝑅_𝑁𝑂𝐷𝐸

Spliting by Chromosome/Contig 𝑁𝑜𝑑𝑒𝑠 = 𝐶ℎ𝑟𝑜𝑚𝑜𝑠𝑜𝑚𝑒𝑠 *
𝑆𝑎𝑚𝑝𝑙𝑒𝑠

𝑃𝑅𝑂𝐺𝑅𝐴𝑀𝑆_𝑃𝐸𝑅_𝑁𝑂𝐷𝐸

Realignment, Recalibration, and Variant Calling (w/o splitting
by chr)

𝑁𝑜𝑑𝑒𝑠 = 𝑆𝑎𝑚𝑝𝑙𝑒𝑠
𝑃𝑅𝑂𝐺𝑅𝐴𝑀𝑆_𝑃𝐸𝑅_𝑁𝑂𝐷𝐸

Realignment, Recalibration, and Variant Calling (w/ splitting
by chr)

𝑁𝑜𝑑𝑒𝑠 = 𝐶ℎ𝑟𝑜𝑚𝑜𝑠𝑜𝑚𝑒𝑠 *
𝑆𝑎𝑚𝑝𝑙𝑒𝑠

𝑃𝑅𝑂𝐺𝑅𝐴𝑀𝑆_𝑃𝐸𝑅_𝑁𝑂𝐷𝐸

Combine Sample Variants 𝑁𝑜𝑑𝑒𝑠 = 𝑆𝑎𝑚𝑝𝑙𝑒𝑠
𝑃𝑅𝑂𝐺𝑅𝐴𝑀𝑆_𝑃𝐸𝑅_𝑁𝑂𝐷𝐸

Joint Genotyping 𝑁𝑜𝑑𝑒𝑠 = 1

Notes:

• PROGRAMS_PER_NODE is a variable set in the runfile. Running 10

processes using 20 threads in series may actually be slower than running the 10 processes in pairs utilizing 10 threads
each

• The call to GATK’s GenotypeGVCFs must be done on a single node. It

is best to separate out this stage into its own job submission, so as not to waste unused resources.

3.7 Pipeline Interruptions and Continuations

3.7.1 Background

Because of the varying resource requirements at various stages of the pipeline, the workflow allows one to stop the
pipeline at many stages and jump back in without having to recompute.

This feature is controlled by the *_STAGE variables of the runfile. At each stage, the variable can be set to Y if it
should be computed, and N if that stage was completed on a previous execution of the workflow. If N is selected, the
program will simply gather the output that should have been generated from a previous run and pass it to the next
stage.

In addition, one can set each stage but the final one to End, which will stop the pipeline after that stage has been
executed. Think of End as a shorthand for “End after this stage”.

3.7.2 Examples

If splitting by chromosome, it may make sense to request different resources at different times.

One may want to execute only the first two stages of the workflow with # Nodes = # Samples. For this step,
one would use these settings:

ALIGN_STAGE=Y
DEDUP_SORT_STAGE=Y
CHR_SPLIT_STAGE=End # This will be the last stage that is executed
VC_STAGE=N
COMBINE_VARIANT_STAGE=N
JOINT_GENOTYPING_STAGE=N

Then for the variant calling step, where the optimal resource requirements may be something like # Nodes = (# Samples
* # Chromosomes), one could alter the job submission script to request more resources, then use these settings:

3.7. Pipeline Interruptions and Continuations 17

Swift_T_Variant_Calling Documentation, Release 1.0.0

ALIGN_STAGE=N
DEDUP_SORT_STAGE=N
CHR_SPLIT_STAGE=N
VC_STAGE=End # Only this stage will be executed
COMBINE_VARIANT_STAGE=N
JOINT_GENOTYPING_STAGE=N

Finally, for the last two stages, where it makes sense to set # Nodes = # Samples again, one could alter the submission
script again and use these settings:

ALIGN_STAGE=N
DEDUP_SORT_STAGE=N
CHR_SPLIT_STAGE=N
VC_STAGE=N
COMBINE_VARIANT_STAGE=Y
JOINT_GENOTYPING_STAGE=Y

This feature was designed to allow a more efficient use of computational resources.

18 Chapter 3. User Guide

CHAPTER 4

Under The Hood

Each Run function has two paths it can use to produce its output:

1. One path actually performs the computations of this stage of the pipeline

2. The other skips the computations and just gathers the output of a prior execution of this stage.

The later is useful when one wants to jump into different sections of the pipeline, and also allows Swift/T’s dependency
driven execution to correctly string the stages together into one workflow.

19

Swift_T_Variant_Calling Documentation, Release 1.0.0

20 Chapter 4. Under The Hood

CHAPTER 5

Troubleshooting

5.1 General Troubleshooting Tips

Regardless of the platform, one can use the following environmental variables to better debug the workflow:

• ADLB_DEBUG_RANKS=1 One can see if the processes are spread across the nodes correctly

• TURBINE_LOG=1 Makes the Swift-T log output very verbose

• TURBINE_LOG_FILE=<filePath> Changes the Swift-T log output from

StdOut to the file of choice

More debug info can be found here

5.2 FAQs

• The pipeline seems to be running, but then prematurely stops at one of the tools?

– Solution: make sure that all tools are specified in your runfile up to the executable itself (or the jar file if
applicable)

• The realignment/recalibration stage produces a lot of errors or strange results?

– Solution: make sure you are preparing your reference and extra files (dbsnp, 1000G,. . . etc) according to
the guidelines in the Data Preparation section

• Things that should be running in parallel appear to be running sequencially

– Solution: make sure you are setting the -n flag to a value at least one more than PROGRAMS_PER_NODE
* NODES, as this allocates processes for Swift/T itself to run on

• The job is killed as soon as BWA is called?

– Solution: make sure there is no space in front of BWAMEMPARAMS

– DO-THIS: BWAMEMPARAMS=-k 32 -I 300,30

21

http://swift-lang.github.io/swift-t/guide.html

Swift_T_Variant_Calling Documentation, Release 1.0.0

– NOT-THIS: BWAMEMPARAMS= -k 32 -I 300,30

• I’m not sure how to run on a cluster that uses torque as a resource manager?

– Clusters are typically configured to kill head node jobs that run longer than a few minutes, to prevent users
from hogging the head node. Therefore, you may qsub the initial job, the swift-t command with its set
variables, and it will qsub everybody else from its compute node.

• I’m having difficulty running the plotting app. I get an error regarding plotly

– The logging app depends on many R packages, including plotly and tidyverse. Some of these
packages however require some OS specific packages. Fore deb systems (Debian, Ubuntu, ..etc), you
may need to install libssl-dev, libcurl4-openssl-dev and libxml2-devwith your favourite
package manager for tidyverse and plotly packages to work.

22 Chapter 5. Troubleshooting

CHAPTER 6

Developer Guide

Files in this repo are organized as follows:

Folder Content
docs The files for this companion site
media Various figures used in the documentation
src The source code of the pipeline, written in Swift/T. See the section Under The Hood for how it is designed
test Files for testing the pipeline on different platforms: XSEDE, Biocluster, Blue Waters _, iForge, and stand

alone server

23

http://swift-t-variant-calling.readthedocs.io/en/latest/
https://swift-t-variant-calling.readthedocs.io/en/latest/UnderTheHood.html
https://www.xsede.org/
http://help.igb.illinois.edu/Biocluster2
https://bluewaters.ncsa.illinois.edu/
http://www.ncsa.illinois.edu/industry/iforge

Swift_T_Variant_Calling Documentation, Release 1.0.0

24 Chapter 6. Developer Guide

CHAPTER 7

Citation and Licensing

If you would like to cite the code of this workflow, please use this doi: doi_number <doi_link>. If you would like a
specific code version however, please use the doi associated with that version (in the release notes).

Alternatively, you may refer to these works:

• Mainzer LS, Ahmed AE, et al. “Comparative Analysis of Genomic Sequencing Workflow Management Sys-
tems”. Poster presentation at the Intelligent Systems for Molecular Biology (ISMB) 2018 conference | Chicago,
USA 6-10 July 2018 [pdf]

• Heldenbrand J*, Ahmed AE*, Rodriguez E, et. al. “Modular genomic variant calling workflow in Swift/T”.
Poster presentation at the 15th Rocky Mountain Bioinformatics Conference | Aspen/Snowmass, Colorado, USA
7–9 Dec 2017 [pdf]

25

	Pipeline architecture and function
	Installation
	Dependencies
	Workflow Installation

	User Guide
	Runfile Options
	Running the Pipeline
	Output Structure
	Logging functionality
	Data preparation
	Resource Requirements
	Pipeline Interruptions and Continuations

	Under The Hood
	Troubleshooting
	General Troubleshooting Tips
	FAQs

	Developer Guide
	Citation and Licensing

